

Accelerator Needs and Design Initial Experiments with CLAIRE

Paul Vetter
Lawrence Berkeley National Lab

Solar Neutrino Spectrum

April 21-26, 2008

DUSEL Workshop Lead, SD

High Precision Measurement of S34

- New solar ν measurements for $^7\text{Be}\ \nu'\text{s}$, attempts at CNO neutrinos
- ⁷Be v's are MSW oscillated while ⁸B v's are not
- Comparison of ⁷Be, ⁸Be v fluxes
- SSM inputs: core temp, metallicity, Θ_{12} , MSW parameters
- Outputs: luminosity, fluxes, seismology

Solar neutrino physics is a precision measurement field.
Correlated observables, uncertainties, science rewards

Science Motivation, CLAIRE 1 (E < 300 keV)

- High precision S34
- 14N(p,g)150 -- confirm LUNA result (CNO v flux = ??!)

• 15N(p,q)160

April 21-26, 2008

DUSEL Workshop Lead, SD

CLAIRE design at LBNL

- 3 year support via Lab Directed R&D funding
- Costed design for low-energy, high-current accelerator
- Timeline for construction

Above ground estimates:

Total funding profile \$4.3 M

Operating costs: 1 FTE scientist, 0.5 FTE technician \$500 k

CLAIRE Low-Energy Design

- High-intensity beam, 0-300 keV, 0-100 mA, < 1cm focus
 - Make Gamow window accessible in H/He burning reactions
- Gas jet target: 1e18 atoms/cm^2
 - High purity
 - Favorable geometry
 - Needs R&D for energy deposition, stability
- Other target options -- simpler solid, gas cell (window/less)
- Target/Detector configuration
 - HPGe -- best energy resolution, background rejection through $\Delta \text{E}/\text{E}$
 - High efficiency: BGO for high Q value reaction
 - Modular station design for simple target replacement?
 - Need R&D, planning for modules, integration with target design

CLAIRE R&D items

Stage 1: Low energy option for CLAIRE, Develop Gas Jet Target

³He(⁴He, γ)⁷Be, d(α,γ)⁶Li, ¹⁴N(p,γ)¹⁵O, ¹⁴N(α,γ)¹⁸F, ¹⁵N(α,γ)¹⁹F, p(d, γ)³He and d(p, γ)³He

Stage 2: Add medium charge state ECR source for energy upgrade, but much low

R&D and Specification Needs

- Beam neutralization in separator magnet
- Beam/Gas Jet interface and heating
- Beam dump geometry to avoid induced backgrounds
- Beam diagnostic elements

Directly applicable for the ALNA facility at DUSEL

Movable gap acceleration
Beam optics solutions
achieved

Gas Jet

Target

Sol

60° Bend

Beam Dump

Diagnostics

Beam

April 21-26, 2008

DUSEL Workshop Lead, SD

Accelerator Specification R&D

- Other target modules -- solid, gas cell (window/less)
- Maximum beam current design
- Beam diagnostics
- Detector package -- HPGe + BGO for high Q

The Underground Accelerator Laboratory

Deep Underground Science and Engineering Laboratory